Bhargavi narayan biography of rory
•
Profile
- Clinical Assistant Professor in Oral and Maxillofacial Surgery
口腔頜面外科臨床助理教授
- Computer-assisted surgery
- Oral cancer
- Jaw reconstruction
- Pu Jane J., Yu Xingna, Pow Edmond H.N., Lam Walter Y.H., Su Yu-Xiong. Single-Double-Single Barrel (1-2-1) Fibula Free Flap Design for Functional and Esthetic Brown Class III Mandibular Reconstruction , Plastic and Reconstructive Surgery 2025; doi:10.1097/PRS.0000000000011950
- Callahan Nicholas, Pu Jane Jingya, Su Yu-Xiong Richard, Zbarsky Steven JD, Weyh Ashleigh, Viet Chi T. Benefits and Controversies of Midface and Maxillary Reconstruction, Atlas of The Oral and Maxillofacial Surgery Clinics of North America 2024; doi:10.1016/j.cxom.2023.12.006
- Pu Jingya Jane, Choi Wing Shan, Wong May CM, Wu Songying, Leung Pui Hang, Yang Wei-fa, Su Yu-Xiong. Long-term stability of jaw reconstruction with microvascular bone flaps: A prospective longitudinal study, Oral Oncology 2024; 152 doi:1
•
Thank You to our Reviewers
Michael A. Bushey Glenn A. Mcconkey Ramesh Aacharya Mette Aadahl Rachel Aaron Eske Aasvang Rusnani Ab Latif Ane Abad Motos Judith Abal Julie Abayomi Ali Abbara Ansar Abbas Qalab Abbas Samira Abbasgholizadeh Rahimi Ibrahim M Abbass Mary Abboah-Offei Amir Abdallah Yaser Abdallah Christina Abdel Shaheed Enas Mahrous Abdelaziz Ibtihal Abdelgadir Ahmad Abdin Senbeta Guteta Abdissa Saad Abdiwali Monireh Abdollahi Rosliza Abdul Manaf Faizul Akmal Abdul Rahim Abdul-Fatawu Abdulai Heshu Abdullah-Koolmees Kawsari Abdullah Jabir Abdullakutty Yousif Abdulraheem Aisha Abdurrahman Mesfin Abebe Parvin Abedi Roberto Ariel Abeldaño Zuñiga Yirgalem Abere Saba Abidi Ajibola Abioye John Abisheganaden Theodore Joseph J. Ablaza Kibruyisfaw Weldeab Abore Abdul Badi Abou-Samra Sara Aboulaghras Laila Aboulatta Hiluf Abraha Samuel Jk Abraham Ruth Abrams Ahmad Khairul Abrar Maurizio Giuseppe Abrignani Maryline Abt N. Abu Rached Arsalan Abu-Much Amani Abu-Shaheen Alaa Abuawad Mohame
•
HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly
Howard Yen Tianyu Gao Minmin Hou Ke Ding
Daniel FleischerPeter IzasakMoshe WasserblatDanqi Chen
p Princeton Language and Intelligence, Princeton University iIntel
{hyen,tianyug,danqic}@cs.princeton.eduAbstract
There have been many benchmarks for evaluating long-context language models (LCLMs), but developers often rely on synthetic tasks like needle-in-a-haystack (NIAH) or arbitrary subsets of tasks. It remains unclear whether they translate to the diverse downstream applications of LCLMs, and the inconsistency further complicates model comparison. We investigate the underlying reasons behind current practices and find that existing benchmarks often provide noisy signals due to low coverage of applications, insufficient lengths, unreliable metrics, and incompatibility with base models. In this work, we present HELMET (How to Evaluate Long-context Models Effectively and Thoroughly), a compre
Article